Available online at www.sciencedirect.com
SCIENCE @nmse'ro

Robotics and Autonomous Systems 49 (2004) 57-66

Robotics and
Autonomous
Systems

www.elsevier.com/locate/robot

Knowledge representation and planning for on-road driving

Stephen Balakirsky*, Chris Scrapper

National Institute of Standards and Technology, Intelligent Systems Division, 100 Bureau Drive, Gaithersburg, MD 20899, USA

Received 27 July 2004; accepted 27 July 2004

Abstract

This paper presents a cost-based adaptive planning agent and knowledge layers that is operating at one level of a deliberative
hierarchical planning system for autonomous road driving. At this level, the planning agent is responsible for developing
fundamental driving maneuvers that allow a vehicle to travel safely amongst moving and stationary objects. This is facilitated
through the application of knowledge to the graph creation process and the use of dynamic cost function within the incrementally
created planning graph. The cost function varies to comply with particular road, regional, or event driven situations, and when
coupled with the incremental graph expansion allows for the agent to implement hard and soft system constraints. Further
discussion will be provided that details one of the expert systems that is implemented to provide the planning system with this

knowledge in real-time.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Knowledge representation; Planning; Autonomous road driving; RCS

1. Introduction

In the mid-1990s, a vision based machine-learning
system known as RALPH controlled the lateral move-
ments of a vehicle over the majority of the highways
across United States of America [1]. This demonstra-
tion targeted a highly structured driving environment
in the nations highway systems. Thorpe et al. [2] com-

* Corresponding author. Tel.: +1 301 975 4791;
fax: +1 301 990 9688.
E-mail addresses: stephen.balakirsky @nist.gov,
stephen@nist.gov (S. Balakirsky), christopher.scrapper@nist.gov
(C. Scrapper).

0921-8890/$ — see front matter © 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.robot.2004.07.016

ments that the development of reliable algorithms for
autonomous driving requires an environment that is un-
structured and realistic. The development of a truly au-
tonomous agent capable of handling partial observable
stochastic environments that contain multiple agents
operating in proximity with each other will require in-
novative ideas.

Deliberative autonomous vehicle planning systems
attempt to create an agent function for goal-based au-
tonomous vehicles. This function attempts to map the
percepts from the vehicles sensors to possible actions
the vehicle can take. Russell and Norvig [3] discuss
deficiencies of table-driven agent functions, i.e. finite
state machines or look-up tables. The authors claim that

58 S. Balakirsky, C. Scrapper / Robotics and Autonomous Systems 49 (2004) 57-66

using a table-driven approach to solving such a prob-
lem is unrealistic and hypothesize the total number of
entries in such a table can be estimated by 3.7, | PJ',
where T is the total number of percepts received by the
agent, and P the set of possible percepts.

Since the generation of appropriate behaviors in
stochastic environments may contain a countably in-
finite sequence of percepts, some deliberative planning
systems use planning graphs that determine the opti-
mal path through cost analysis. Guo et al. [4] discuss
a typical motion planner that attempts to use this ap-
proach to tackle the global trajectory-planning prob-
lem. However, their approach has shown to be unable
to handle the computational complexities in real-time.
Balakirsky [5] has developed a real-time deliberative
planning system that attempts to limit the computa-
tional complexity and has shown positive results in
real-time. This approach is based on an A* graph search
algorithm that limits the size of the graph through the
application of knowledge throughout the graph creation
and evaluation process. This knowledge is derived from
a variety of sources that includes a priori world knowl-
edge bases, sensor systems, and situation assessment
systems.

This paper will provide an overview of this plan-
ning approach and the areas that knowledge has been
applied to limit the systems graph complexity. Further
discussion will be provided that details one of the expert
systems that is implemented to provide the planning
system with this knowledge in real-time. The layout of
the rest of this paper is as follows. Section 2 contains
a brief synopsis of the real-time control system refer-
ence architecture, RCS. In Section 3, the knowledge
requirements of our general planning approach are dis-
cussed. Section 4 provides a detailed description of one
of the systems knowledge generators and cost genera-
tors, and shows how this knowledge is derived. Finally,
Section 5 will conclude the paper with a summary and
discussion of future work.

2. The reference model architecture

In order to guarantee real-time operation and de-
compose the problem into manageable pieces, it was
necessary to embed the planning framework into a hi-
erarchical architecture that was specifically designed
to accommodate real-time deliberative systems. The

real-time control system (RCS) reference model archi-
tecture is a hierarchical, distributed, real-time control
system architecture that meets this need while provid-
ing clear interfaces and roles for a variety of functional
elements [6,7].

Under RCS, each level of the hierarchy is composed
of the same basic building blocks. These building
blocks include behavior generation (task decomposi-
tion and control), sensory processing (filtering, detec-
tion, recognition, grouping), world modeling (knowl-
edge storage, retrieval, and prediction), and value
judgement (cost/benefit computation, goal priority).

For the case of on-road driving, the overall task
may be decomposed into a five-level hierarchical sys-
tem where each level refines its supervisor’s plan out-
put. An example of such a hierarchy is depicted in
Fig. 1.

Each of these levels will have their own unique
planning objective, re-planning rate, and knowledge
requirements. The planning system presented in this
paper is designed to fill the roles of behavior genera-
tion, world modeling, and value judgement for a single
level of the hierarchy (level 3). The system receives a
set of intersections that must be traversed and a final
goal location from its supervising level. The system
then refines this plan for specific lane locations and ve-
hicle velocities while taking into account dynamic and
static objects as well as user objectives and constraints.
The results of this plan refinement are then passed to
the next lower level of the hierarchy for further refine-
ment and execution. This process is periodically re-
peated to account for changes in the planning horizon

Level

Planning Task

Example

5

Destination and ordering
constraints

Go to supermarket and then
bank

ment to accomplish section
of route

4 | Specific route to get to a sin- | Drive First Street until Mar-
gle destination ket; Turn Left on Market; ...
3 [Lane and speed manage- [Drive left lane using ac-

celeration profile ’a’ until
time=10; Change to right
lane with lane change profile
‘184’

In-lane control to follow lane
and avoid small objects

Drive trajectory (parame-
ters)

Actuator positions

Throttle 20%, steering5%

Fig. 1. Example hierarchical decomposition for road driving
problem.

S. Balakirsky, C. Scrapper / Robotics and Autonomous Systems 49 (2004) 57-66 59

and uncertainty in the prediction of moving object lo-
cations and the success of task execution.

The world model utilized by the planning system for
this level of the hierarchy is adapted from (7) to contain
multiple knowledge layers within the WM, e.g. mov-
ing object prediction, road trajectory generator, a priori
maps, etc. The knowledge layers discussed in this paper
are expert systems that lie at the heart of the planning
system for on-road driving. In order to describe the gen-
eral knowledge requirements of these layers, the layer
known as the Node Generator (NG) will be discussed
in detail. The NG is composed of a simulator/predictor
and a knowledge database (KD). The NGs KD con-
tains a fused combination of sensed and a priori data
that fully defines the road network (number of lanes,
road curvature, lane markings, etc.), while the sim-
ulator/predictor simulates spatial/temporal transitions
within the road network in order to provide predictions
about future states and state transitions. These simu-
lated transitions, along with the embedded road knowl-
edge, are fused with the output of the other knowledge
layers and evaluated by value judgement (VJ) to con-
struct and analyze an incrementally created graph. The
result of this graph evaluation produces a plan that ex-
hibits the appropriate behaviors for navigating road net-
works.

3. Planning framework

The planning system utilized by level 3 of the road
driving system is based on the incremental creation
and evaluation of a planning graph as detailed by Bal-
akirsky [5]. This system must apply various types of
knowledge to accomplish the tasks of goal generation,
graph construction, graph evaluation, and algorithm
termination.

3.1. Goal generation

At the beginning of each planning cycle, the execu-
tor from the planner’s supervisor must create a goal set
that contains approximate locations that the vehicle will
strive to achieve near the time of the time-based plan-
ning horizon. Future steps of the planning algorithm
will cause termination when one of these goal states is
achieved, or produce an error status report if none of
the states may be achieved within a time margin of the

planning horizon. Due to vehicle motion, the planning
horizon will change with each planning cycle and the
location of the members of the goal set will change.
The actual vehicle will never execute more then 10%
of the computed plan before the next planning cycle
delivers a new plan for execution.

Fusing event driven command input (drive First
Street until Market) and world knowledge (a traffic sig-
nal exists one block ahead on First Street) constructs
the planner’s goal set. For example, if traveling down a
multi-lane road that contains a traffic signal, one poten-
tial goal location would be at the signal’s intersection
(the vehicle was stopped by a red light or congestion)
and another would be some distance down the road
that may be calculated by the vehicle’s expected speed
and the planning horizon. The executor currently uses
a combination of a rule base and the NG (described in
Section 4.2) to construct the goal set.

3.2. Graph construction

The plan at level 3 of the hierarchy is constructed
through the use of an incrementally created graph (5).
This approach utilizes knowledge generators to suggest
potential next system states based on the current state
being evaluated. Each of these knowledge generators
is capable of determining possible state transitions for
a restricted set of input states. For example, the cur-
rent level 3 system utilizes one knowledge generator
for on-road driving and a second, different generator,
for off-road driving. Environmental knowledge about
the location of roadways and information about the su-
pervisor’s desired goals (is the system trying to get
off the road, or follow the road?) is utilized in mak-
ing decisions about which generator (or combination
of generators) to use.

The on-road knowledge generator, which is de-
tailed in Section 4.2, utilizes the vehicles current state
(location, velocity, etc.), environmental information
(weather, visibility, etc.), road knowledge (number of
lanes, road curvature, etc.), and supervisor constraints
(aggressiveness, conformance to rules of the road, etc.)
to algorithmically determine possible next states that
lie along the roadway. The off-road knowledge gen-
erator incorporates similar information to construct a
visibility graph around “no-go” region bounding boxes
in order to find the shortest path that navigates less con-
strained off-road environments.

60 S. Balakirsky, C. Scrapper / Robotics and Autonomous Systems 49 (2004) 57-66

3.3. Graph evaluation

Once possible state transitions have been deter-
mined, these new states must be added into the graph
structure. The transition to each new state is represented
in the graph by a graph arc, and each transition is eval-
uated by all of the knowledge layers. This evaluation
summarizes all of the state transition simulations that
have been performed by the various knowledge lay-
ers and represents all of the events related to the state
transition. This information includes knowledge about
static and dynamic object interactions, conformance to
the rules of the road, and general state variable changes
(i.e. the vehicle lane changes). Section 4.3 provides
more detail on this operation for the moving object
prediction layer.

The information represented by the graph arc must
now be summarized into a single value to be used dur-
ing graph search. The planning system must combine
all of the layer’s simulation results and the supervisor’s
constraints to produce this single value. As in the graph
generation, multiple cost systems that are specifically
tuned to the different classes of terrain that the vehicle
traverses exist to fill this function (see Section 4.3 for
more information). The current system utilizes separate
cost systems for determining the cost of road traversal,
intersection traversal, general off-road traversal, and
special off-road area traversal.

3.4. Algorithm termination

Once a value has been determined for each new
graph arc, a standard graph search algorithm that is ca-
pable of producing a complete and optimal path (such
as Dijkstra [8] or A* [9]) may be applied to find the next

state that will be examined. If this state is a member of
the goal set, then the planning function is complete. If
not, elapsed computation time and minimum path cost
will be examined to determine if a planning failure has
occurred. If a planning failure has occurred, further
knowledge must be applied to address the failure. It is
possible that a sub-optimal solution exists or that rules
in the knowledge generators may be relaxed to allow
for additional states to be created and a solution to be
found.

4. Application of knowledge

While knowledge is applied during all phases of the
planning process, the heart of the system lies in the
graph construction and evaluation. A sample knowl-
edge generator for graph construction and a simulation
engine for graph evaluation will now be presented in
detail.

4.1. Detailed graph construction

The main difference between the incremental graph
planning framework and traditional graph planning ap-
proaches is in the way states are mapped to nodes and
the way that the nodes are connected.

4.1.1. Attributed nodes

The left side of Fig. 2 depicts several static objects
that may be in an planning system’s world model (a
high density black object (i.e. a brick wall) and a low
density white object (i.e. an empty can). In addition to
knowledge about an object’s location, the world model
tracks all of the object’s attributes that are necessary

Fig. 2. Representative objects and resulting nodes.

62 S. Balakirsky, C. Scrapper / Robotics and Autonomous Systems 49 (2004) 57-66

constraints on the plan. Since no graph nodes exist in
the oncoming traffic’s lane, it is impossible for the sys-
tem to plan to enter this lane. It should be noted that if
a planning failure occurs (no path below a certain cost
threshold exists), then the constraints may be relaxed
and the set RAND expanded to include all of the cir-
cles. The system must then use soft constraints in the
form of the system cost function in order to discourage
the vehicle from driving in the oncoming traffic’s lane.
This may be accomplished in two different ways. The
first is to assign a high arc cost to the action of crossing
a double yellow line on the road. This will discourage
the vehicle from entering the opposing lane. The sec-
ond is to assign a high state cost to occupying a state
whose direction of travel is opposite of the vehicles.
This will assure that once in the opposing lane, the stay
is as short as possible.

4.2. Road knowledge generator detail

A knowledge base that provides concise, accurate
information about the road environment is essential
for the successful operation of any deliberative au-
tonomous on-road vehicle. Schlenoff et al. {11] have
developed a road network database that accurately con-
veys the appropriate information about road networks
for the various fidelities of planning systems that are
used in the RCS hierarchy.

The road network database captures the structure
and features of the road network in a six level hierar-
chy that ranges in resolution from roads (bi-directional
stretches of travel lanes bounded by proper names) to
lane segments (a piece of a lane that consists of a con-
stant curvature arc). Each level of the hierarchy encap-
sulates the minimum set of attributes needed to derive
the appropriate knowledge about road networks for be-
havior generation at a particular level of abstraction.

The level 3 planning system described in this paper
requires the highest obtainable fidelity from the on-
road driving database, which is derived from the lower
echelon of the decomposition hierarchy. This level of
abstraction encodes lane segments and includes direct
attributes that represent items such as end points, cur-
vature, speed limit, and segment direction as well as
indirect attributes (derived from higher levels of the
database) that contain information about road mark-
ings, lane widths, lane barriers, and roadway composi-
tion.

4.2.1. Road state generator

In general, road networks present a continuous,
complex, unstructured environment containing static
and dynamic features. To decrease the computational
complexities of planning in a continuous domain, the
NG maps the continuous environment into a set of dis-
crete uniformly spaced attributed nodes known as road
states. These road states carry with them specific at-
tributes (e.g. lane markings, speed limit) of the lane
segment from which they were derived and are each
uniquely identifiable. Note that the mapping from the
continuous domain to a discrete domain inherently in-
troduces an error in the spacing of the last two nodes of
every lane segment. This error is less than half of the
defined point spacing, and due to planning fidelity, is
acceptable in this implementation of the NG.

The NG uses these road states, along with the ve-
hicle’s potential actions, to determine a given state’s
spanning set (the set RAND) for use in the graph ex-
pansion. This spanning set is made up of plausible next
road states, known as goal states, and simulated spatial-
temporal transitions of the vehicle along a road net-
work, known as trajectories. The set of goal states and
trajectories defines a reachability graph that is used by
the planner to find a cost optimal path through the road
networks.

4.2.2. Derivation of road states

In order to derive the road states, the NG relies on
an internal knowledge database that consists of a data
structure that stores a priori knowledge of the road net-
works as well as in situ knowledge received from the
sensory data. This data structure, which is implemented
as a connected graph of adjacent lane segments, is de-
picted in the UML logical model in Fig. 4. The road
primitives are generalized in polymorphic structures in
order to facilitate the extendibility and durability of the
data structure.

Fig. 5 depicts the mathematical models that the
NG uses to extract and elaborate road states from the
knowledge residing in the KD. For instance, the UTM
location of a road state in a curved lane segment is
derived by utilizing a rotational matrix, whose angle
corresponds to the angular offset of the road state in
the lane segment. The matrix is used to rotate the ra-
dial vector that runs from the curvature center to the
starting point of the lane segment. The rotated vector is
then translated to the proper UTM locations by adding

S. Balakirsky, C. Scrapper / Robotics and Autonomous Systems 49 (2004) 57-66 63

Intersection

1 1
3..§ r l..lg |
|Intersection Lane Segment Lane Segment
T —

s e

Road Networkl

- V
: Generic Lane Segment -

S -

| Lane SegmentPM |

r]
[Curved Lane Segment PM] | Straight Lane Segment PM|

Fig. 4. UML logical model of NGs knowledge database.

the UTM location of the curvature center of the lane
segment,

4.2.3. Spanning set generation
The constrained simulator of the NG is responsible
for the determination of a given nodes spanning set.

Arc Length of the entire lane segment
L-[E |, =] |

Number of nodes in a given scgment

N. = l__L‘ + o.sJ
5

Angle corresponding to s for a particular lane segment
e = % e, =1.0

¢ r 5

Determining UTM locations of individual nodes
cos(®*i) sin(® ™)
~sin(® *5) cos(©®*:)

UTM, = CE+C

BE

| =]

UTM vectors that define a lane segment
C=Curvature Center, B=Start Point, E=end Point
w = width of lane scgment
s=uniform arc length separating each node in lane segment

r-_-" CB “,deius

i = Road node index into {ane segment
Subscripts:
c=curved lane scgment, s=straight lane scgment, *<both

i

UTMS=§+.r*

Fig. 5. Mathematical models for knowledge extraction.

Northing (in meters)
30 T T ¥ Y Y

Root Node '0
Road Nodes +
Goal Nodes £

2%k

8 10 12 14 16 18 20 22 24 26 28 30
Easting (in meters)

4 YR i e A

Fig. 6. Reachability graph.

The spanning set of a node is returned as a reachabil-
ity graph as shown in Fig. 6. Each branch of the graph
represents a separate trajectory that models the distance
traveled and relevant actions performed by the vehicle
(i.e. turn, change lane, maintain lane) per cycle. A tra-
Jjectory is represented by the NG as an ordered subset
of road states that are connected to a given root node
to form the reachability graph. The leaf nodes of the
graph are the set of obtainable goal states for a given
cycle.

In order to limit the potential size of the graph
and restrict vehicle maneuvers, the simulator uti-
lizes action and state relevance when creating the
reachability graphs. For example, on a first planning
pass the NG may be constrained from returning any
road states that violate a driving law or would pro-
duce uncomfortable vehicle movement. However, if
no plan is found that satisfies the planner’s cost con-
straint, re-planning could take place with a reduced
set of constraints (expanded RAND). The constraints
could now allow for emergency maneuvers by alter-
ing the angle in which lane changes are performed
or allow nodes deemed illegal by the set of road
rules.

The simulator creates the reachability graphs by ap-
plying equation-based algorithms to the state being ex-
panded. The state consists of the vehicle constraints,

64 S. Balakirsky, C. Scrapper / Robotics and Autonomous Systems 49 (2004) 57-66

Lane Segment 1

movAlongLane(node, nodelXist, direction):
NexiNode = node_id + (direction * nodeDist)
If NextNode < 0
get Start_Link LS
nodeDixt = nodeDist - node_id
Else if NextNode >= nodeCount
get End Link LS
nodeDist = nodeDist - (node.nodeCount~ node_id)
Else return #ode in lane
If Link_Lane_Segment_Side = END
direction= -1
node = get end node of linking lone segment
Else
direction=1
node = get first node of linking lane segment
movAlaongLane(node, nodeDist direction)

Fig. 7. lllustration and pseudo-code for function used to move along
a lane.

predicted road state, orientation, and velocity. The cur-
rent base set of functions used in the simulator allows
for the vehicle to move along the lane segment or to
change lanes.

The function that moves along the lane is illustrated
along with pseudo-code in Fig. 7. Note that this fig-
ure assumes that the arc length between the uniformly
spaced road states is one meter. When the function
is called, the number of road states that can be tra-
versed (deltaNode) is initially computed. If deltaNode
is greater than or equal to the number of road states in
the lane segment (nodeCount) then the simulator must
get a handle to the lane segment linking to the end of
the current lane segment and the appropriate road state
of the adjacent lane segment. Once the link to the adja-
cent road state is found, the simulator determines how
many nodes it may still traverse (rDist). The function is
recursively called to move along the lane in order find
a leaf node. During the recursive process, the function
maintains an ordered set of road states that consists of a
given start node, a leaf node, and the first node of every
lane segment traversed during the process.The change
lane function depicted in Fig. 8 uses a trigonometry-
based equation to model a lane change while adhering
to the lane change angle required for the maneuver. Eq.

Equation 1:
F = l Y 4+ 0.5 J

tan o

Equation 2:

© e *i |
i = Zoyren " Jamrem g 5|
docent @ adjacent :

Fig. 8. Trigonometry-based equations used by the simulator to
change lanes.

(1) from Fig. 8 shows how this function calculates the
forward F component that is required to model the lane
change angle a given the lane change width w. Eq. (2)
shows the means in which the function ascertains the
corresponding node index i in the adjacent lane seg-
ment.

The simulator builds the reachability graph one
trajectory at a time using the two functions dis-
cussed previously. When constructing a reachability
graph, the simulator attempts to find additional arms
of the reachability graph (representing multiple lane
changes) by recursively searching adjacent lanes us-
ing the two base equations mentioned above. This is
accomplished by first performing a lane change ma-
neuver to the adjacent lanes of the root node. If an
adjacent lane segment exists, and a node in this lane
segment is obtainable at the given vehicle’s speed,
then the function forms a trajectory to this adjacent
lane. This trajectory is created by connecting the root
node of the reachability graph to the node found dur-
ing the lane change maneuver with nodes that model
the vehicle’s traversal to this lane as intermediate
nodes in the trajectory. A completed reachability graph
that is used by the planning system is depicted in
Fig. 6.

S. Balakirsky, C. Scrapper / Robotics and Autonomous Systems 49 (2004) 57-66 65

4.3. Cost evaluation detail

During graph construction, the knowledge gener-
ators that are detailed in the previous section for-
mulate a set of next possible states that the system
may achieve. They do not however, tell the system
which state it should achieve. This decision is made
through the use of a graph search that finds the “cheap-
est” combination of nodes and arcs (a path through
the graph) that achieves the system’s goal. The ac-
tual cost of the path is determined by the value judg-
ment module and is made up of the two components
of node cost and arc cost. The node cost is computed
through the application of rules to the state informa-
tion that is available in each node. For example, addi-
tional cost is accrued for traveling the wrong direction
in a lane. Arc cost consists of a combination of the
action and effect costs of transitioning from one state
to the next and the cost of occupying the area covered
during the transition. It is the job of the value judg-
ment module to summarize these result into a single
value.

The traffic prediction layer presents an example of
the simulations performed to determine the arc cost.
This layer has the responsibility of predicting the future
location of any moving object that is being tracked by
sensory processing. The output of the layer is a proba-
bility map that shows the probability that a given object

(a) Intersection

(c) Controlled w/ Vehicle €

will be at a given location at a given time. This layer
is specifically tuned to operate for either off-road or
on-road driving. The layer may change modes of op-
eration on an arc by arc basis. For off-road driving,
a Kalman filter may be used to predict the near-term
location of vehicles moving in the vicinity of our con-
trolled vehicle. For on-road driving, knowledge of the
road network, rules-of-the-road, and traffic conditions
provides valuable information that aids in computing
this location map.

For example, Fig. 9(a) depicts a vehicle about to
cross an uncontrolled intersection with no traffic. It
is likely that this vehicle will continue in its current
lane at its current velocity as it traverses the intersec-
tion. If however, this intersection is controlled by a stop
sign (Fig. 9(b)), will increase the probability of a lane
change to avoid extra stopping time. Under the cur-
rent implementation of the traffic lyer, a rule base is
used to encode these probability changes. The proba-
bility changes due to rules firing have been determined
in an ad hoc manor, and further research into prop-
erly, and automatically, setting these values is ongoing.
Once the vehicle’s expected actions have been estab-
lished, locations may be computed. Bayesian theory is
then applied to determine the final location probability
map that combines all of this information. A detailed
description of this layer’s functions may be found in
[12].

(b) Controlied Intersection @

il = L.
0 Constant ~ Accelerate ' Decelerate Change Lane
Velocity
{# Intersection # Conirolled & Wivehicle §

Fig. 9. Example of how the environment affects the predicted vehicle activity.

66 S. Balakirsky, C. Scrapper / Robotics and Autonomous Systems 49 (2004) 57-66

5. Summary and future work

Future developments for this system are scheduled
to occur on the two fronts of real-system operation and
theoretical development. While the system currently
runs under NISTs simulation environment, it has never
operated on any of our real robot systems amongst real
traffic. We hope to address this issue this summer by
demonstrating road driving amongst traffic on our cam-
pus.

On the theoretical side, development will continue
on all of the knowledge generators that are part of the
planning system. In particular, the NG will to be ex-
tended to handle more complex road structures, such as
large clover-leaf intersections and parking lots, larger
environments, and real-time sensor updates. This will
require the further development of the on-road driving
database [11] as well as the intelligence contained in
the NG.

In order to work with larger environments, the world
will be divided into multiple grids that can be cached
into and out of memory. A statistical model will have
to analyze how the planning system expands the plan-
ning graph in order to determine the appropriate way
to prune the grids that are in memory. Real-time sensor
data will replace a priori estimates of road curvature
and lane markings. Significant research into data reg-
istration and fusion remains to be performed.

References

[1] D.Pomerleau, T. Jochem, Image processor drives across Amer-
ica, Photonics Spectra.

[2] C. Thorpe, M. Herbert, T. Kanade, S. Shafer, Toward au-
tonomous driving: the cmu navlab. I. Perception, Expert IEEE
[see also IEEE Intelligent Systems].

[3] S. Russell, P. Nonig, Artificial Intelligence: A Modern Ap-
proach, Prentice-Hall, 1995.

[4] Y. Guo, Z. Qu, J. Wang, A new performance-based motion plan-
ner for nonholonomic mobile robots.

{5] S. Balakirsky, A Framework for Planning with Incrementally
Created Graphs in Attributed Problem Space, 10S Press, 2003.

[6] J. Albus, Outline for a theory of intelligence, IEEE Transaction
on Systems Man and Cybernetics.

[7] J. Albus, A. Meystel, L. Zadeh, Engineering of Mind: An In-
troduction to the Science of Intelligent Systems, 2001.

[8] E. Dijkstra, A note on two problems in connexion with graphs,
Numerische Mathematik.

[9] P. Hart, N. Nilsson, B. Raphael, A formal basis for the heuris-
tic determination of minimum cost paths, IEEE Transaction on
Systems Science abd Cybernetics.

[10] A. Blum, M. Furst, Fast planning through planning graph anal-
ysis, Artificial Intelligence.

[11] C. Schienoff, S. Balakirsky, A. Barbera, C. Scrapper, E. Hui, M.
Pardes, J. Ajot, The Nist Road Network Database, Version 1.0,
Technical Report, National Institute of Standards and Technol-
ogy, 2004.

[12] C. Schlenoff, R. Madhaven, S. Balakirsky, An approach to pre-
dicting the location of moving objects during on-road naviga-
tion.

Stephen Balakirsky received the Ph.D. de-
gree from the University of Bremen, Ger-
many in 2003. He is currently a researcher
in the Intelligent Systems Division of the
National Institute of Standards and Technol-
ogy. His research interests include planning
systems, knowledge representations, world
modeling, and architectures for autonomous
systems.

Chris Scrapper works as a Computer Sci-
entist in the Intelligent System Division
of the National Institute of Standards and
Technology. He is also a doctoral student
attending George Washington University.

